species delimitation

what is the species delimatation?

The process of dividing the boundaries of existing by a series of methods and means

BFD(Bayes factor delimitation)

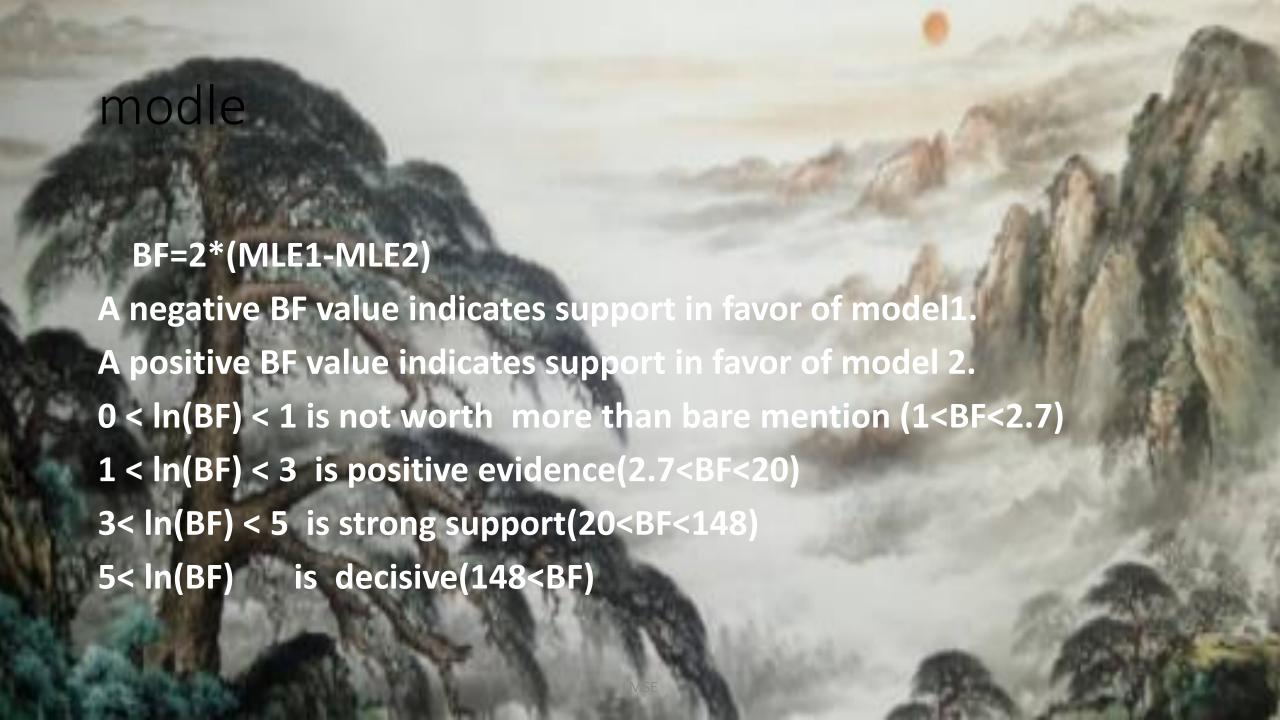
 A method of species delimitation in a Bayesian framework using SNP data and the programs SNAPP and BEAST.

MLE(marginal likelihood estimate) value

The advantage of BFD

- One advantage of BFD over other species, delimitation approaches is the ability to integrate over species trees during the species delimitation procedure, which removes the constraint of specifying a guide tree that represents the true species relationships.
- Another advantage is the ability to compare models that contain different numbers of species。
- disadvantage

the user needs to predefine the number of species and sample assignments, and this prevents the method from searching among all possible species assignments.


model

three sample,

modle1 AB CD modle2 AC B D modle3 A BC D modle4 ABC modle5 A B C D

Model	Species	MLE	Rank	BF
runA, current taxonomy	4	-935.820	5	<u></u>
runB, lump western forests	3	-898.914	1	-73.8
runC, lump central forests	3	-963.806	7	+56.0
runD, lump western & central forests	2	-935.930	6	+0.2
runE, split $fasciatus$	5	-924.466	4	-22.7
runF , split $eniangii$	5	-919.750	2	-32.1
runG, reassign Bioko Island	4	-920.018	3	-31.6
$\overline{\text{MLE}} = \overline{\text{Marginal likelihood estimate}}$				

BF = Bayes factor

What do we need in BFD analysis?

- 1.programs:We will be using the free, open-source software package, BEAST (Bayesian Evolutionary Analysis Sampling Trees; http://beast2.org), for estimating species trees. For this tutorial, you will need to use BEAST version 2.1 or better. The distribution comes with the BEAUTi, including SNAPP.
- 2.data: the data should be in binary format(necessary for SNAPP)

