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Workshop on Molecular Systematics and Evolution

The lab of Molecular Systematics & Ecology
Shanghai Ocean University, Lingang, Shanghai, Jan 7-11, 2019

Jan 7 (Mon.) Jan 8 (Tue.) Jan 9 (Wend.) Jan 10 (Thur.) Jan 11 (Fri.)
8:30 — 9:00 EvolMarkers2 Date filtering, Population structure, F-dist, Bayescan, Intro Al
0:00 — 9:15 discussion Junman Huang partition AMOVA,PCA Other adaptive methods | Liang Lu
Hao Yuang ingwen Xue Longlong & Suhan
Tea Break
9:30 — 10:00 Lib prep & gene cap | Gene tree, species Spatial structure, GWAS introduction, | Convolutional
10:00 — 10:15 discussion | Lifang Peng tree population dynamics improved method network
Guoxin Yin Huirui & Ying Zigiang Gong Liang Lu
Tea Break
10:30 — 11:00 Read assembling Time calibration, Species delimitation Environment GWAS, | GANs
11:00 — 11:15 discussion | Junman Huang topology test Lei & Songjun pedigree deducing Hao Yuan
Guoxin Yin Zigiang Gong
unch
1:30 - 2:00 Post assembling data | Biogeography, ABC Transcriptomic Protein folding
2:00 — 2:15 discussion processing character mapping Anirban Sarker analysis Liang Lu
Hao Yuan Yinyi Yang Tao Zhou
Tea Break
2:30 - 3:00 Molecular evolution SNP calling Fastsimcoal2 Comparative Genome prediction
3:00 — 3:15 discussion Chenhong Li SNPs vs sequences | Lifang Peng genomics, EP Hao Yuan
Qiaoyun Ai Hao Yuan
Tea Break
3:30 — 4:00 Population genetics Summary statistics, | Land markers Open: How to Open: Ideas
4:00 — 4:15 discussion Chenhong Li Arlequin Qiaoyun Ai identify phenotype applying Al
Qiaoyun Ai associated genes




Two faces of one process:
phylogenetics vs. population genetics




Phylogenetics — model of speciation
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Population genetics — model of

coalescence
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Population genetics
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Null model of phylogenetics

e Topology and branch length

—

Taxa 1
Taxa 2
Taxa 3
Taxa 4
Taxa 5

e Substitution matrix

Frc (= rer)s Foa (= Par), Frg (= T67)

Fea (= Tac) e (= 1ec)

Fac (= Tga)

e Stationary base frequencies
5, fo far T



Likelihood of the simplest tree

sequence 1 sequence 2

To keep things simple, assume that the sequences are only 2
nucleotides long:

GA GG
TN, Geotaiam) K
L = Lqi Lo
1 1 Aot 1 L1
- [(4) (z _ )] [(4) (z—f )]

([ Pr(G) ' [ Pr(GIG, 0 } ( Pr(A) ' [ Pr(G|A, o) )

Paul O. Lewis (2015 Czech Republic Warkshop in Molecular Evolution) ( Note that we are NOT assuming independence here ’




"ACHNyons" vs. substitutions

When an achnyon occurs, any

A= base can appear in a sequence.
Anything
Can Happen Note: achnyon is my term for this
Now" make-believe event. You will
not see this term 1n the literature.

If the base that A T  The rate () at which any
appears is different C G particular. substitution
from the base that occurs will be 1/4 the
was already there, then a achnyon rate (u).
substitution event has occurred. That 1s, a = u/4

(or u=4a)

Paul O. Lewis (2015 Czech Republic Workshop in Molecular Evolution) 41



Deriving a transition probability

Calculate the probability that a site currently T will change to G
over time f when the rate of this particular substitution 1s o

PI’(ZCI’O achnyons) = e—,u t (Poisson probability of zero events)
Pr(at least 1 achnyon)= 1 — e #*
Pr(last achnyon results in base G) = i
- : _ 1 — it
Prend in G |startin T) = 7 (1 —e # )

Remember that the rate () of any particular substitution 1s
one fourth the achnyon rate (u):

Por(t) =1 (1 — e ')

Paul O. Lewis (2015 Czech Republic Workshop in Molecular Evolution) 42




Likelihood of the simplest tree

sequence 1 sequence 2

To keep things simple, assume that the sequences are only 2
nucleotides long:

GA GG
TN, Geotaiam) K
L = Lqi Lo
1 1 Aot 1 L1
- [(4) (z _ )] [(4) (z—f )]

([ Pr(G) ' [ Pr(GIG, 0 } ( Pr(A) ' [ Pr(G|A, o) )

Paul O. Lewis (2015 Czech Republic Warkshop in Molecular Evolution) ( Note that we are NOT assuming independence here ’




From shide 6

A A, 7 Likelihood for site &

P4

pi\ @)
S P2
Po
vs 1s the expected number
of substitutions for just this
one branch
Lk =%[ + 3€—thrlf3][ + 36-4\1-1;'3] I:% 38_4‘"3!3] [%_l —4\;4!3][ + 38—4v IB]

| Poa(vy) ' | AA(Vz) ' | AC(vS) , | CT(V4) ' | cc(vs) '
Paul O. Lewis (2015 Czech Republic Workshop in Molecular Evolution) ( Note use of the AND probability rule )




i.i.d. assumption

» Each site evolves independently and according to the
Identical process, so called “I.i.d.” process.



Assumptions in basic models

« Stationarity and time reversibility. Stationarity and time
reversibility assure the expected frequencies of the
nucleotides or amino acids are constant along the
evolutionary pathway.

« The conditional probabilities of nucl. subst. are the same
for all sites and do not change over time or among
lineages.

* Q...... Are these assumptions reasonable?



INDEPENDENCE?

We assume that change at one site has no effect on other sites. Frequently
violated. eg. Ribosomal RNA

A substitution in a stem region can result in a pair of nucleotides that
cannot “Watson-Crick pair” correctly, reducing stability of the structure.

Often we find that single changes are accompanied by compensatory
changes.

Clearly violates the independence assumption.

Weight differently for stem and loop sites



Variation In rates of substitution among
Sites?

All of the methods presented assume that each site in a sequence Is equally
likely to undergo substitution.

If rates of substitution vary, can have considerable influence on sequence
divergence (i.e. how much change we estimate to have occurred)

Consider the case where some sites are free to vary while others are
constrained to be invariant



If a large proportion of sites are not free to vary then paradoxically,
sequences that evolve at a fast rate can appear to show less sequence
divergence than more slowly evolving sequences that have fewer
constraints.
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In reality sites show a range of probabilities of distribution of rates

Challenge is to develop a tractable model of the rate variation

Most widely used approach uses the “gamma distribution”

Gamma distrib has a shape parameter o that specifies range of rate
variation among sites

small values of o result in L-shaped distrib. larger values smaller range
of rates.

when o > 1 distribution is “bell shaped”



Estimates of alpha vary from nuclear and mitochondrial genes
vary between 0.16 (12sRNA) - 1.37 (prolactin)
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Values of o from first & 2nd codon positions tend to be smaller than

those from 3rd codon positions



Can modify models of evolutionary change to
Include the gamma distribution - typically
represented by the symbol I

HKY + I



Base Composition Equilibrium?

Assumes that base composition is roughly the same over the collection of
sequences.

Deviations from this assumption occur commonly and often lead to misleading
Inferences.

When constructing trees there is a tendency to cluster sequences together that have
similar base compositional profiles.

Explicitly modeling the non-stationary process



Compositional bias
(non-stationary)

 “Compositional bias can

: A B C D
result in the artefactual

grouping of species with ~ 20% 70% 70% 50%
similar nucleotide tj tj
composition, because

most methods assume the ‘

: A B C D
homogeneity of the S09% \
substitution process and 50% 70% 70% 50%
the constancy of ‘ LJ ‘

sequence composition
(stationarity) through
time ” (Delsuc et al. 2005).



Heterotachy

Heterotachy is the
variation of evolutionary
rate of a given position of
a molecule through time.

The diagram on the right
is a simple scenario used
by Kolaczkowski and
Thornton (2004).

TRENDS in Genetics

From Steel, 2005



Long branch attraction

“Intuitively, with long
branches leading to
speices A and C, the
probability of parallel
changes that arrive at the
same state becomes
greater than the
probability of an
informative single change
in the interior branch of
the tree” (Felsenstein,
2004).

A

B
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Phylogenomics

* Prediction of gene function (Eisen, 1998)

* Establishment of evolutionary relationships
using genome or genome-scale data



One gene or more genes?

* Single gene or a few genes often result low
resolution.

* Single gene or a few genes may even reach to
the wrong phylogeny.



Systematic error

Phylogenetic signal

Gene A Gene B Gene C



Statistics and concepts

Likelihood function
Distribution
Bayesian approach
MCMC

Model selection
Testing hypothesis



Likelihood function

L, =Pr(DI|H)
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The Dirichlet Process
the Chinese Restaurant Process
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Markov chain

A Markov chain is a model in which changes in states
follow transition probabilities.

e|t is a stochastic system, i.e. random process
*The probability of the next state depends on the current state,
but can also have a chain with memory
eThe probability of moving to another state follows a
probability distribution
eBut it can stay in the same locality, where locality may be in
space or time



Markov chain Monte Carlo

Monte Carlo: town in Monaco famous for its casino (including the European Poker Tour
and World Backgammon Championship)

Relevance ?

both operate on random processes




MCMC Robot

Slightly downhill steps are usually Dirastic "off the cliff* downhill ste Pf‘\l
accepted because R is close to 1.

In this case, there is a 92% chance ’ a are almost never acFEptEd becau.se
. r . R is near zero. In this case, there is
that t!‘us proposed step only a 3% chance that this
will be accepted ; ! N \ proposed step will be accepted j
- %
Currently at 6.2 m LY /\. N

Proposed at 5.7 m ‘
R=57/62=0%2

Currently at 6.2 m
. Froposed at 0.2 m
. Rk=o02e2=003

Currenthy at 1.0 m
Proposed at 23 m
R=2310=23

If the robot's proposed step is not
[Pm posed uphill steps are alwaysj accepted, it simply stays where it

accepted because R = 1 is and tries again.

http://marple.eeb.uconn.edu/mcmcrobot/?page_id=24



Model selection
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Likelihood ratio test

6 =2(InLy —InLy),

where In L is the likelihood score of the more complex model. The test statistic is
then typically evaluated under the assumption of asymptotic convergence to a x?
distribution; the degrees of freedom are the difference in number of free parameters
in the two models.



Akaike Information Criterion

The Akaike information criterion (AIC) (Akaike 1973) is a simple measure witl
a complex derivation. The AIC for model i (AIC;) is calculated as follows:

AIC; = =2 In L; + 2k;,

156 SULLIVAN ® JOYCE

where In L; is the maximum log-likelihood of the model (i.e., with joint ML
estimates across parameters) and k; is the number of parameters in model i. In



quantifying uncertainty in model selection). Burnham & Anderson (2002, 2004)
provide the following benchmarks for discerning the relative support for alternative
models: A; < 2 indicates substantial support, 4 < A; < 10 indicates weak
support, and A; > 10 indicates no support. Furthermore, these A; values can be



BAYES FACTORS In Bayesian comparison of two models, the Bayes factor permits

direct evaluation of the support in the data for one model versus another (Kass &
Raftery 1995). This support is calculated as by By, = pr(D|M;)/pr(D|M>), and
it can be multiplied by the ratio of the prior probabilities of each model to give



hLRTs. As with the A; under the AIC, benchmarks are provided by Raftery (1996)
to interpret relative support on the basis of the magnitude of the Bayes factor.
When B, > 20, support for M, 1s strong; when 3 < By, < 20, M; 1s slightly
favored; and when 1 < B;; < 3, the two models are supported roughly equally by
the data. Suchard et al. (2002) used Bayes factors to examine a nested subset of



Annu. Rev. Ecol. Evol. Syst. 2005. 36:445-66

doi: 10.1146/annurev.ecolsys.36.102003.152633

Copyright (¢) 2005 by Annual Reviews. All rights reserved

First published online as a Review in Advance on September 16, 2005

MODEL SELECTION IN PHYLOGENETICS

Jack Sullivan'* and Paul Joyce*-

I Department of Biological Sciences, University Idaho, Moscow, Idaho 83844-3051;
email: jacks @uidaho.edu

2[nitiative in Bioinformatics and Evolutionary Studies (IBEST), University of Idaho,
Moscow, Idaho 83844

S Department of Mathematics, University of Idaho, Moscow, ldaho 83844-1103;
email: joyce @uidaho.edu



Thank you!
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