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Abstract 

Amplicon sequencing of tags such as 16S and ITS ribosomal RNA is a popular method for 

investigating microbial populations. In such experiments, sequence errors caused by PCR 

and sequencing are difficult to distinguish from true biological variation. I describe 

UNOISE2, an updated version of the UNOISE algorithm for denoising (error-correcting) 

Illumina amplicon reads and show that it has comparable or better accuracy than DADA2. 

 

Introduction 

Recent examples of microbial tag sequencing experiments include the Human Microbiome 

Project(HMP Consortium, 2012) and a survey of the Arabidopsis root 

microbiome(Lundberg et al., 2012). The experimental protocol in such studies includes 

amplification by PCR followed by sequencing, which introduces errors in several ways. 

Amplification introduces substitution and gap errors (point errors) due to incorrect base 

pairing and polymerase slippage respectively(Turnbaugh et al., 2010). PCR chimeras form 

when an incomplete amplicon primes extension into a different biological template(Haas et 

al., 2011). Sequencing also introduces point errors due to substitutions (incorrect base 

calls) and gaps (omitted or spurious base calls). Contaminants from reagents and other 

sources can introduce spurious species(Edgar, 2013). Spurious species can also be 

introduced when reads are assigned to incorrect samples due to cross-talk, also known as 

tag switching or barcode switching(Carlsen et al., 2012). 
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The first amplicon sequencing error-correction methods were designed for 

pyrosequencing flowgrams(Quince et al., 2011, 2009; Reeder and Knight, 2010; Rosen et 

al., 2013). More recently, Illumina denoisers have been described including UNOISE(Edgar 

and Flyvbjerg, 2014), MED(Eren et al., 2015) and DADA2(Callahan et al., 2016). The goal of 

these methods is to infer accurate biological template sequences from noisy reads. This 

task is generally divided into two phases: 1. correcting point errors to obtain an accurate 

set of amplicon sequences (denoising) and 2. filtering of chimeric amplicons. The result is a 

set of predicted biological sequences that I call ZOTUs (zero-radius OTUs). ZOTUs are valid 

operational taxonomic units that are superior to conventional 97% OTUs for most 

purposes because they provide the maximum possible biological resolution given the data 

while using 97% identity may merge phenotypically different strains with distinct 

sequences into a single cluster(Tikhonov et al., 2015; Callahan et al., 2016). 

 

The high-level strategy used by UNOISE and UNOISE2 is to cluster the unique sequences in 

the reads. A cluster has a centroid sequence with higher abundance plus similar sequences 

(members) having lower abundances (Fig. 1). The centroid is inferred to be correct and its 

members are inferred to be reads of the same template sequence containing one or more 

point errors. The clustering criteria in UNOISE2 have been redesigned as described below. 

UNOISE2 uses a one-pass clustering strategy that does not use quality (Q) scores and has 

only two parameters with pre-set values that work well on different datasets. By contrast, 

DADA2 uses quality scores in an iterative divisive partitioning clustering strategy based on 

a Poisson model with hundreds of parameters (a 4×4 transition matrix for each Q score) 

that is re-trained on each dataset. UCHIME2 and DADA2 are thus quite different, suggesting 

that their approaches may have complementary strengths and weaknesses. With this in 

mind, I will show that taking the subset of ZOTUs predicted by both algorithms reduces the 

number of incorrect sequences compared with using either one alone. 
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UNOISE2 algorithm 

Let C be a cluster centroid sequence with abundance aC and M be a member sequence of 

that cluster with abundance aM. Let d be the Levenshtein distance (number of differences 

including both substitutions and gaps) between M and C. The abundance skew of M with 

respect to C is defined to be skew(M, C)=aM/ aC (Edgar et al., 2011). If M has small enough d 

and small enough skew with respect to C, then it is probably an incorrect read of C with d 

point errors (Fig. 1). This intuition is made concrete by introducing the following function:  

 

 β(d)=1/2αd + 1.          (Eq.1) 

 

The user-settable parameter α is set to 2 by default, giving β(1)=1/8, β(2)=1/32, 

β(3)=1/128.... If skew(M, C) ≤ β(d) then M is a valid member of a cluster defined by C; i.e., β 

is the maximum skew allowed for a member with d differences. As d increases, β decreases 

exponentially, reflecting that more errors are less probable and the abundance skew 

should therefore be lower. The β function was designed by hand as a model of error 

abundance distributions obtained for several mock and in vivo Illumina datasets using the 

FASTX-LEARN algorithm (http://drive5.com/usearch/manual/cmd_fastx_learn.html). This 

is what physicists call a phenomenological model—a simple mathematical function that fits 

the data (and only to a very rough approximation in this case; see Discussion) without 

using an underlying theory.  

 

Changing the α parameter trades sensitivity to small differences against an increase in the 

number of bad sequences which are wrongly predicted to be good. For example, setting 

α=3 gives β(1)=1/16, β(2)=1/128, β(3)=1/1024... which are smaller minimum skews 

compared to the default α=2. Thus, with α=3 a variant with d=1 and skew between 1/8 and 

1/16 is predicted as a correct sequence while with α=2 it is predicted to have one error. 

Conversely, setting α=1 gives β(1)=1/4, β(2)=1/8, β(3)=1/16... so that a variant with d=1 

must have a skew of at least 1/4 to be predicted as correct. 
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Input to the UNOISE2 algorithm is the set of unique read sequences with abundance ≥γ, 

where γ=4 by default. Low-abundance uniques are discarded because they are more prone 

to contain errors that are reproduced by chance or bias. A database of cluster centroids is 

initially empty. Sequences are considered in order of decreasing abundance. A sequence 

(Q) is assigned to cluster C if skew(Q, C) ≤ β(d). If no such C exists, Q becomes a new 

centroid. The final set of centroids are reported as the predicted amplicons. These 

amplicons are filtered by the UCHIME2 algorithm using denoised de novo mode(Edgar, 

2016).  

 

ZOTU table construction 

A table with the number of reads for each ZOTU in each sample is constructed by 

considering all reads before any quality filtering, including those with abundance <γ. The 

same matching criteria are used, but no new centroids are created. Thus, if a read R is 

identical to ZOTU C, or if skew(R, C) ≤ β(d), then R is assigned to C. In practice, a large 

majority of reads with low quality or low unique sequence abundance are due to errors in 

high-abundance ZOTU sequences, and this procedure thus improves sensitivity by 

recovering most of the reads that were discarded for the denoising step. Most of the reads 

not assigned to ZOTUs are usually accounted for by chimeras, which the user can verify by 

making a ZOTU table using predicted amplicons prior to chimera filtering. 

 

Sample pooling and sensitivity to rare sequences 

Correct biological sequences with abundance <γ are lost in the denoising step and thus do 

not appear in the ZOTU table. I therefore recommend pooling reads from all samples in the 

denoising step rather than denoising each sample individually. In a typical dual-indexed 

sequencing run, there are ~100 samples and pooling thus increases the abundance of most 

correct sequences by one or two orders of magnitude, depending on how many samples 

contain a given strain. A sequence with abundance <4 over ~100 samples is very rare in 

the reads—it appears in at most three samples, in which case it would be a singleton in 

each, and has a maximum abundance of three in 1/100 of the samples. The data can say 

little about the ecological significance of this sequence. For example, it has (or should have) 
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no significant effect on well-chosen alpha or beta diversity measures. I would therefore 

argue that in most cases, the loss in sensitivity due to setting γ=4 is inconsequential. If the 

user prefers to increase sensitivity at the cost of a possibly large increase in spurious 

ZOTUs, a smaller value of γ can be used. 

 

The authors of DADA2 suggest denoising samples individually to enable detection of 

variants that would be lost by pooling. This happens in a scenario when a close variant (V) 

of a more dominant strain (D) has high abundance in one or a few samples but low 

abundance overall, causing V to be misidentified as D with errors. This is a valid point, and 

applies equally to UNOISE2. However, there are also disadvantages to this strategy. With 

~100 samples, abundances are ~100× smaller in one sample and are therefore subject to 

much larger fluctuations which may degrade discrimination of errors from correct 

sequences. Some low-abundance variants may be lost that would be correctly identified by 

pooling, e.g., because they are singletons in some of the samples where they occur. Also, the 

denoiser may make different mistakes in different samples, causing a given ZOTU to 

contain different combinations of phenotypes. If that happens, ZOTUs are not directly 

comparable between samples. For example, V might be correctly identified as a biological 

variant in a few samples but misidentified as an error in others (this seems likely to occur 

in the motivating scenario where V has low overall abundance). Then, in some samples the 

ZOTU for D would contain V while in others D and V would be assigned to separate ZOTUs. 

When samples are pooled, a ZOTU will always contain the same phenotypes (hopefully, but 

not necessarily, just one) and this problem is avoided. With these caveats in mind, it is 

reasonable to try both strategies and compare the results. 

 

Global trimming and defining abundance 

Calculating unique sequence abundance is problematic when reads of the same template 

sequence vary in length, e.g. because reads are truncated when the quality score drops 

below a threshold. Consider a case with two reads A and B where B is shorter but otherwise 

identical to A. Here, abundance could be defined in three different ways. (1) There are two 

unique sequences A and B, each with abundance one. (2) There is one unique sequence A 

with abundance two. (3) There is one unique sequence B with abundance two. All of these 
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definitions have problems. With (1), a given template sequence with high abundance in the 

amplicons will typically have many different unique sequences with low abundances 

because its reads are truncated to many different lengths. With (2) the unmatched tail of A 

is considered to have the same abundance as the prefix of A that is identical to B. The tail 

has no support from other reads (it is effectively a singleton), but that information is lost 

and in practice long reads with noisy tails are assigned high abundances. With (3), the 

shortest sequence in a set is supported by longer sequences. This is the least bad definition: 

if the abundance is high, the sequence is likely to be correct. However, phylogenetically and 

phenotypically informative bases may be lost, and the ambiguities inherent in comparing 

sequences of different length must now be addressed by downstream algorithms (e.g., 

denoising or OTU clustering). For example, if two unique sequences differ in length by one 

base and have one substitution, should this count as d=1 (just the substitution) or d=2 

(substitution plus terminal gap)? If large variations in length are allowed, then the 

phylogenetic and phenotypic resolution of the sequences may vary substantially, degrading 

the comparability of ZOTUs or OTUs to each other for calculating diversity, predicting 

taxonomy and so on. These problems are avoided by ensuring that reads of the same 

template sequence have the same length (global trimming, implying that reads of the same 

template should be globally alignable, though more distantly related sequences need not 

be). The simplest method for global trimming is to truncate all reads to the same length. 

This is not usually necessary with overlapping Illumina paired-end reads that have been 

merged by a paired-read assembler. In this case, the merged sequence always terminates at 

the reverse primer which guarantees that reads of the same template will have the same 

length regardless of variations in amplicon length between different species. If multiple 

primers were used which do not bind to the same locus, then trimming is required to 

ensure that reads of the same template amplified by different primers start and end at the 

same position in the biological sequence. Primer-binding bases should be discarded from 

the reads because PCR tends to induce substitutions at mismatched positions; in most 

cases this is easily accomplished by discarding a fixed number of bases (the primer lengths) 

from each end of the sequence. There is no need to explicitly match the primer sequence in 

order to trim it unless there are multiple primers binding to different loci. 
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Quality filtering and paired read merging 

UNOISE2 per se does not use quality scores. However, denoising is more effective with 

quality-filtered reads because sequencing error bias can cause some errors to have 

sufficiently high abundances that they could be mistaken for biological variants, and these 

often have lower quality scores. I therefore recommend discarding reads with ≥1 expected 

errors so that the most probable number of errors is zero for all reads(Edgar and Flyvbjerg, 

2014). Paired reads should be merged using a Bayesian assembler before expected error 

filtering to exploit the improved base calls and posterior error probabilities obtained in the 

overlapping region(Edgar and Flyvbjerg, 2014). Methods that truncate at varying lengths 

based on quality scores, e.g. the QIIME quality filter described in(Bokulich et al., 2013), 

should not be used (see Global trimming above). 

 

Validation 

I compared UNOISE2 and DADA2 on three mock and three in vivo datasets (Table 1). Two 

of the mock datasets use a community designed(Haas et al., 2011) for the Human 

Microbiome Project and one is the Extreme dataset(Callahan et al., 2016) used to validate 

DADA2. DADA2 was not tested on the ITS data as it is not designed for amplicons with 

larger variations in length. On the vagina reads, DADA2 predicted 187 amplicon sequences 

twice, differing only in length. I discarded the shorter version of each sequence. 

 

A ZOTU was classified as follows. If it is 100% identical to a known sequence in the 

designed mock community, it is Perfect. If it is <100% and ≥97% to a known mock 

sequence, it is Noisy. If it is 100% identical to a sequence in the SILVA(Pruesse et al., 2007) 

16S database v123 or the UNITE(Kõljalg et al., 2013) ITS database v04.11.2015, it is Exact, 

if >97% identical Good, and if none of the above then Other. On mock data, the mock 

reference database is considered before the large database (SILVA or UNITE).  

 

A Noisy ZOTU is most likely to have uncorrected errors, though it could be a valid biological 

variant that is present in the community but missing from the mock reference database, e.g. 

due to an unknown paralog or an impure cell line used to make the mock sample. An Exact 
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ZOTU is probably correct, though it could be an error that reproduces a sequence found in 

the database (this is more likely that it might appear as explained in the discussion of 

chimera filtering below). An Exact ZOTU in a mock sample is <97% with all known mock 

sequences and 100% identical to a SILVA sequence and is therefore very likely to be a 

correct biological sequence due to contamination or cross-talk. A ZOTU classified as Good 

or Other could be a correct sequence that is missing from SILVA or UNITE, or it could have 

errors. N1, N2 and N3 are the number of ZOTUs for which the nearest ZOTU has 1, 2 and 3 

differences, respectively. These indicate how many close variants were predicted, but are 

difficult to interpret on in vivo samples because those variants could be true biological 

sequences or uncorrected errors. OTUs were constructed by clustering ZOTUs with 

UCLUST(Edgar, 2010) at 97% identity. The average number of ZOTUs per OTU gives an 

indication of the increased resolution achieved at 100% identity. 

 

Results are summarized in Table 2. On the Mock1 dataset, the UNOISE2 results are better. 

Almost half (22/50) of the DADA2 ZOTUs are Noisy while UNOISE2 predicted 23/29 Perfect 

amplicons, 3/29 Exact and no Noisy. On the other mock datasets, the programs have similar 

performance. On Mock2, most ZOTUs are Perfect or Exact. Both predict ~100 Exact 

amplicons which are explained by high-frequency MiSeq cross-talk (manuscript in 

preparation). Taking the subset of ZOTUs predicted by both programs (U&D) retains most 

of the Perfect and Exact amplicons in all datasets, while discarding most of the Noisy 

amplicons and many of the Good and Others. This supports the hypothesis that Good and 

Other probably contain a mix of errors and correct sequences missing from the reference 

database. The number of d=1 neighbors (N1) is substantially higher for UNOISE2 in Soil1. 

This is mostly accounted for by the larger numbers of chimeras predicted by DADA2, many 

of which have only a single difference with their closest putative parent. If these DADA2 

chimera predictions are mostly false positives, as I argue under Chimera filtering below, 

then UNOISE2+UCHIME2 has better sensitivity to close variants. However, this cannot be 

established with certainty and it is also possible that UCHIME2 failed to filter a substantial 

number of valid chimeras, in which case it would be better to use non-default parameters 

for UCHIME2 specifying equivalent criteria to DADA2. 
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Results on the Extreme mock community are summarized in Table 3. Shaded rows are 

ZOTUs which are not found in the mock reference database but are exact matches to SILVA; 

these are probably contaminants not in the designed community or variants missing from 

the reference database. All five of these were identified by UNOISE2, two of which were 

also found by DADA2. Two of the designed strains were predicted to have one Perfect ZOTU 

and one Noisy ZOTU by UNOISE2, otherwise all ZOTUs for designed strains were Perfect 

from both programs. UNOISE2 failed to identify one low-abundance designed strain, P. 

copri, which was successfully identified by DADA2. 

 

Chimera filtering 

Validation of chimera filtering for ZOTUs raises issues that can be neglected with 97% 

OTUs. For example, the most abundant unique sequence in Mock1 occurs in 2.8×106 reads. 

This sequence is from Staphylococcus epidermidis and S. aureus, which are both present in 

the community and have identical V4 sequences. The sequence length is 233nt after 

merging of read pairs and trimming the primer-binding bases. There are 3×233=699 

possible variants with one substitution, all of which are present in the reads. Several of 

these variants can be reconstructed exactly as two-segment chimeras from known 

sequences in the mock community, and these potentially chimeric reads therefore cannot 

be distinguished from d=1 point errors. Presumably, in some cases the same unique 

sequence is generated by point errors (which are likely to be reproduced several times 

with such a large read depth) and by one or more chimera formation events (chimeras 

formed by different parents or different cross-over points can have identical sequences). 

The point errors could be due to PCR or to sequencing; most likely both. In such cases, the 

unique sequence cannot be exclusively classified as a chimera or as a point error because it 

is found in both types of read. Also, the reference database for the HMP mock community 

(21 strains) has 115 different 16S sequences, an average of 5.5 distinct 16S sequences per 

strain. While having multiple 16S operons per genome is common, 16S paralogs usually 

have the same sequence(Acinas et al., 2004) and it therefore seems unlikely that all of the 

sequences in the reference database are present in the genomes of the ATCC cell lines 

specified for the community (this is hard to verify because it is not documented how the 

database was made, to the best of my knowledge—it is also possible that there are variants 
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in the database found by Sanger sequencing and explained by impure cell lines). 

Extraneous sequences are problematic for validation because they increase the likelihood 

of incorrect inferences of chimeras and can cause false inferences that amplicon sequences 

are non-chimeric and correct. For example, if there is an S. aureus variant with one 

difference in the reference database, it will be present in the reads (because all d=1 

variants are present), even if that variant is not present in the sample. 

 

UCHIME2 and the DADA2 removeBimeraDenovo function use similar algorithms for 

chimera detection in denoised amplicons, but there are differences in the details which are 

important in practice. Both construct a model of the query sequence from segments of two 

other amplicons (the parents). UCHIME2 requires that the model is identical to the query 

sequence while DADA2 allows one difference with the model if the query has four or more 

differences with both parents. Also, UCHIME2 requires an abundance ratio of at least two; 

i.e. the least abundant parent used to make the model must be at least twice as abundant as 

the query (because parents undergo at least one more round of amplification than the 

chimera), while DADA2 requires only that the parents are more abundant than the query. 

DADA2 will therefore tend to discard more sequences: those having one difference in the 

model or an abundance ratio between one and two. 

 

Comparing DADA2 and UCHIME2 chimera filtering on mock data would ideally use an 

independent method to classify sequences as non-chimeric or chimeric by comparison with 

the mock sequence reference database. However, as discussed above, it is not possible in 

general to determine whether a sequence is chimeric and / or has point errors, especially 

when the number of differences is small. A sequence cannot be reliably classified as non-

chimeric unless it is identical to a reference sequence(Edgar, 2016), and amplicons with 

uncorrected point errors therefore cannot be reliably classified. These issues should not be 

circumvented by choosing to consider only chimeras with more differences (which can be 

distinguished from point errors more reliably), because low-divergence chimeras are the 

most common(Edgar, 2016) and are therefore the most important in the context of 

denoising, which by definition attempts to resolve low-divergence biological differences. 

Given these considerations, it is clear that the (debatably) independent reference-based 
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methods which could be considered, i.e. UCHIME2 in denoised reference mode, UPARSE-

REF(Edgar, 2013) or the seqs.error command in mothur(Schloss et al., 2009), are no more 

or less trustworthy than the methods being tested despite the apparent advantage of using 

the database, and would likely be biased in favor of one of the algorithms, depending on 

which method and parameters were chosen (e.g., gap and cross-over penalties for scoring 

chimeric alignments). Note also that a mock reference database could contain errors and is 

almost certainly incomplete due to contaminants and cross-talk in the reads, and it is 

therefore plausible that de novo methods, which can detect unexpected sequences, could 

construct a more accurate database than the "official" reference. Simulated data would 

have similar issues with the additional problem that the simulation might not be 

sufficiently realistic (note the circular problem of learning parameters for such a model 

from real data when chimeras and point errors due to sequencing and PCR cannot be 

distinguished). In conclusion, robustly measuring chimera filtering accuracy of denoisers 

using a gold standard is not possible because there is no method for identifying or 

simulating chimeras that is demonstrably better than the algorithms to be tested. 

 

I compared the results of DADA2 and UCHIME2 to each other by running both 

removeBimeraDenovo and UCHIME2 on amplicons predicted by DADA2. On the low-

diversity mock community data, the algorithms were in agreement: both filtered the same 

sequences. However, there were substantial differences on the in vivo data, most obviously 

on the high-diversity 16S soil sample (Fig. 2). Here, DADA2 reported 939 of 8,470 

amplicons as chimeric while UCHIME2 filtered only 401, less than half as many. Of these 

401, all but one were also filtered by DADA2. Of the 539 filtered only by DADA2, 282 had 

abundance ratios between one and two and the remaining 257 had one difference (Fig. 2). 

The 539 sequences filtered only by DADA2 must be false positives by DADA2 or false 

negatives by UCHIME2. I believe that a large majority of these are probably false positives 

by DADA2, and that most likely many of the 400 filtered by both are also false positives, 

while acknowledging that my reasoning makes assumptions and approximations that are 

difficult to test. 
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The 257 cases where the model has one difference necessarily imply incorrect predictions 

by DADA2—if the query is chimeric then one of the three amplicons (query plus parents) 

has an uncorrected point error causing the difference, and if the query is not in fact 

chimeric then it is a false positive. (For a loophole in this argument, see What are 

amplicons? below). I believe that false positive chimeras will have a much higher frequency 

than uncorrected point errors, given the high accuracy of DADA2 on most of the mock 

datasets and the observation that fake chimeric models are very common, especially when 

differences are allowed(Edgar, 2016).  

 

Most of the 282 sequences filtered by DADA2 with abundance ratios between one and two 

are probably also false positives. The argument here is based on the abundance ratio 

distribution expected for true chimeras. Suppose there are N rounds of PCR. A chimera 

created in the kth round should have an abundance ratio of ~2k because the parents are 

duplicated by all N rounds while the chimera is duplicated by the N–k remaining rounds 

after it is formed. The lowest observed abundance ratios should therefore be ~2 due 

mostly to chimeras formed in the first round. The frequency of ratios between two and one 

should fall as the ratio decreases, and ratios close to one should have very low frequency. If 

the rate of chimera formation is constant in each round, then ~1/N of the chimeras will 

form in the first round. If fluctuations in the abundance ratio are equally likely to give 

values <2 and >2, then approximately half of the chimeras formed in the first round will 

have abundance ratio <2, i.e. 1/(2N). (E.g., to a first approximation the distribution could be 

normal with a mean of 2). The soil sample was amplified using 30 PCR cycles, so this rough 

estimate predicts that ~1/60th (2%) of chimeras will have abundance ratios <2, with a 

small minority of these close to one. I suspect that chimeras are much more likely to form 

in later rounds because there are more amplicons, in which case this estimate is 

conservative. Either way, 2% is a reasonable estimate for the upper bound on the number 

of chimeras we should expect with abundance ratios <2. These expectations are very 

different from the DADA2 predictions (Fig. 2). A majority (282/539=52%) have abundance 

ratio <2., and 90/539=17% have abundance ratios <1.2. The frequency increases rather 

than decreases as the abundance ratio drops from two to one. These observations are 
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difficult to reconcile with true chimeras, but are readily explained if most of the predictions 

are false positives due to fake models. 

 

If many or most of the DADA2 predictions with abundance ratio <2 are false positives, then 

many of the predictions with small ratios >2, say in the range two to three, are probably 

also false positives because the false positive rate should be approximately independent of 

the abundance ratio when the ratio is small (with larger ratios, the number of candidate 

parents is reduced, which may reduce the rate of false positives because there are fewer 

ways to make fakes). Given that UCHIME2 agrees with 400/657 of the DADA2 chimera 

predictions with ratios >2, it seems likely that many of the UCHIME2 predictions are also 

false positives, despite using more stringent parameters (no differences allowed in the 

model, abundance ratio ≥2). 

 

What is an amplicon? 

To this point, I have described denoising as prediction of amplicon sequences followed by 

chimera filtering. This glosses over a complication that is important for chimera 

identification. If PCR point errors are often found in the reads, then we want to correct 

them in order to recover the biological sequences. But for optimal chimera identification at 

single-base resolution we need all of the amplicon sequences generated in the PCR 

reaction, including those with point errors because we want to find chimeras whose parent 

segments have PCR point errors. Ideally, a denoiser pipeline would therefore 1. correct 

sequencer error, leaving PCR point errors; 2. filter chimeras; then 3. correct PCR point 

errors. However, I do not believe that this is a tractable approach because point errors due 

to sequencing generally cannot be distinguished from point errors due to PCR. So in 

practice, denoisers implicitly attempt to remove all point errors before chimera filtering, 

which might degrade chimera filtering. If you believe that PCR point errors are common, 

then it might be reasonable to allow one or even more differences between the chimera 

and its model. This is a possible justification for the DADA2 chimera identification criteria, 

though no motivation for allowing a difference has been given by the authors, to the best of 

my knowledge. However, this design is likely to increase the number of false-positive 
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chimera predictions. I believe that it is probably better to assume that chimeras with PCR 

point errors are rare and those that do form are more likely to be created in later rounds 

and most will be discarded because they have very low abundances <γ, in which case it is 

better to require an exact match to the model. Hence the choice of default parameters in 

UCHIME2. 

 

Discussion 

Denoising exploits the observation that a low-abundance sequence that is very similar to a 

high-abundance sequence is likely to be an error. The fundamental challenge of denoising 

is determining an abundance threshold that distinguishes a correct sequence from an error. 

Error frequencies vary due to biases which cannot be accurately predicted and to 

fluctuations due to sampling effects which are predictably present but have unpredictable 

values for any given sequence. Outliers are common, explained by fluctuations, PCR point 

errors and non-random sequencing error; see e.g. (Schirmer et al., 2015). Non-random 

sequencing error cannot be explained by measurable biases such as tendencies to make 

certain base call substitution errors. PCR point errors are amplified in subsequent rounds 

of PCR, so while it is plausible that point errors are generated by an approximately Poisson 

process, they are then exponentially amplified causing anomalously high abundances by 

factors of ~2k for k =1 ... N-1 if there are N rounds. These observations necessitate setting 

very conservative thresholds which fail to identify low-abundance biological variants in 

order to suppress anomalously high-frequency errors which are very common in practice. 

In other words, denoisers must lean strongly towards “lumping” rather than “splitting” 

ZOTUs. In the case of DADA2, this is reflected in the astronomically small default value of 

its OMEGA_A parameter (10–20). Abundance p-values above OMEGA_A are considered to 

indicate an error in the sequence, so p=10–19 is bad but p=10–21 is good. In the case of 

UNOISE2, this is reflected in the parameters of the β function which were chosen to 

suppress outliers rather than typical errors. With 16S and ITS data, this approach gives 

largely accurate and useful results despite its unavoidable limitations because close 

variants are relatively rare and merging them is relatively benign. It is clearly better to 

accept that some d=1 or d=2 variants will be lumped into the same ZOTU than to use 
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traditional clustering at 97% identity, which always lumps variants with d≤7 into the same 

OTU when the sequence length is ~250nt. 
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Figures and Tables 

 

Figure 1. Schematic of the UNOISE2 denoising strategy. The left panel shows the 

neighborhood close to a high-abundance unique read sequence X, grouped by the number 

of sequence differences (d). Dots are unique sequences, the size of a dot indicates its 

abundance. Green dots are correct biological sequences; red dots have one or more errors. 

Neighbors with small numbers of differences and small abundance compared to X are 

predicted to be bad reads of X. The right panel shows the denoised amplicons. Here, X and 

b were correctly predicted, e is an error with anomalously high abundance that was 

wrongly predicted to be correct, f is an error that was correctly discarded but has an 

abundance almost high enough to be a false positive, and g is a low-abundance correct 

amplicon that was wrongly discarded. The abundances of b, e, and f are similar, illustrating 

the fundamental challenge in denoising: how to set an abundance threshold that 

distinguishes correct sequences from errors. 
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Figure 2. Chimeras predicted by DADA2 and UNOISE2 on the Soil1 dataset. Each 

histogram bar gives the number of predicted chimeras in an abundance ratio (AR) range 

labeled by its upper value, so the first bin contains chimeras with 1.0≤AR<1.2, the second 

1.2≤AR<1.4 and so on. The last bin has all chimeras with AR>10. Notice that DADA2 

predicts more than twice as many chimeras as UCHIME2, many of which have AR<2, while 

most chimeras would be expected to have AR≥2 because the parents undergo at least one 

more round of PCR amplification. In the bins with AR≥2 the two programs agree on most 

predictions. DADA2 predicts a few more in each bin because it sometimes allows one 

difference in the chimeric model built from the putative parent sequences while UCHIME2 

always requires an exact match. 
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Set Tag Read length Nr. reads Reference 

Mock1 16S V4 250 7.5 M (Bokulich et al., 2013) 

Mock2 16S V4 250 1.0 M (Kozich et al., 2013) 

Extreme 16S V4 250 2.0 M (Callahan et al., 2016) 

Vagina 16S V1-V2 300 2.1M (MacIntyre et al., 2015) 

Soil1 16S V4 250 1.0 M (Kozich et al., 2013) 

Soil2 ITS1 250 2.6 M (Schmidt et al., 2013) 

 

Table 1. Datasets used for testing. All datasets contain MiSeq paired-end reads. A 

random subset of 1M read pairs was extracted from the Mock2 and Soil1 datasets because 

DADA2 failed to converge in the model estimation step when all reads were input. Mock1 

and Mock2 are the mock communities with 21 strains(Haas et al., 2011) used to validate 

sequencing protocols in the Human Microbiome Project. The Extreme mock community has 

27 strains(Callahan et al., 2016). 
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Set Method ZOTUs / OTUs Perfect Noisy Exact Good Other N1 N2 N3 

 UNOISE2 29 / 27 (1.1) 22 0 5 2 0 2 1 0 

Mock1 DADA2 50 / 25 (2.0) 23 22 3 1 1 28 0 3 

 U&D 26 / 24 (1.1) 22 0 2 1 1 3 0 0 

 
UNOISE2 126 / 98 (1.3) 21 1 98 7 0 17 8 8 

Mock2 DADA2 134 / 121 (1.1) 22 3 102 3 4 6 2 6 

 
U&D 105 / 95 (1.1) 21 1 80 1 0 3 2 4 

 
UNOISE2 31 / 22 (1.4) 24 2 5 0 0 9 2 0 

Extreme DADA2 26 / 20 (1.3) 24 0 2 0 0 5 2 0 

 
U&D 25 / 19 (1.3) 23 0 2 0 0 5 2 0 

 
UNOISE2 464 / 224 (2.1) - - 251 213 18 101 82 66 

Vagina DADA2 432 / 263 (1.6) - - 268 122 42 78 59 41 

 
U&D 309 / 185 (1.7) - - 219 71 19 48 52 36 

 
UNOISE2 10286 / 4767 (2.2) - - 2624 5737 2313 1379 2046 1933 

Soil1 DADA2 7531 / 4824 (1.6) - - 2073 2350 3108 488 925 1020 

 
U&D 7148 / 4508 (1.6) - - 2015 2280 1097 434 906 1010 

Soil2 UNOISE 1369 / 540 (2.5) - - 107 289 950 755 242 130 
 

Table 2. Results on test datasets. See main text for explanation of column headings and 

discussion of the results. U&D is the consensus of UNOISE2 and DADA2, i.e. ZOTUs 

predicted by both algorithms. 
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Reference sequence Nr. Reads UNOISE2 DADA2 U&D 

B.ovatus 948231 Perfect Perfect Perfect 

B.vulgatus 692568 Perfect Perfect Perfect 

B.cellulosilyticus_DSM_14838 87550 Perfect Perfect Perfect 

C.xylanovorans 73118 Perfect Perfect Perfect 

P.distasonis_JCM_13400 43283 Perfect Perfect Perfect 

P.distasonis_JCM_13401 36545 Perfect Perfect Perfect 

P.merdae 10179 Perfect Perfect Perfect 

B.uniformis 8752 Perfect Perfect Perfect 

C.cocleatum 6811 Perfect Perfect Perfect 

C.comes_ATCC_27758 5658 Perfect Perfect Perfect 

EU474320.1.1403 1129 Exact Exact Exact 

B.thetaiotaomicron 851 Perfect Perfect Perfect 

C.celatum_JCM_1394 738 Perfect Perfect Perfect 

R.inulinivorans_DSM_16841 663 Perfect Perfect Perfect 

B.fragilis 577 Perfect Perfect Perfect 

AEBM01000009.73.1621 380 Exact Exact Exact 

B.massiliensis 98 Perfect Perfect Perfect 

P.clara_YIT_11840 83 Perfect Perfect Perfect 

R.intestinalis_L1-82 75 Perfect & Noisy Perfect Perfect 

E.rectale_DSM_17629 59 Perfect & Noisy Perfect Perfect 

ABAX03000031.168.1689 24 Exact - - 

KC893634.100371.101861 13 Exact - - 

B.eggerthii_1_2_48FAA 11 Perfect Perfect Perfect 

R.gnavus_ATCC_29149 11 Perfect Perfect Perfect 

P.copri_DSM_18205 9 - Perfect - 

C.phytofermentans_ISDg 5 Perfect - - 

JQ085185.1.1483 4 Exact - - 

 

Table 3. Results on the Extreme mock community. The table shows strains identified by 

UNOISE2 or DADA2. Shaded rows are ZOTUs which are not found in the mock reference 

database but are exact matches to SILVA. U&D is ZOTUs predicted by both UNOISE2 and 

DADA2. 
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